Abstract
The behavior of the thermally stable austenite in the ductile fracture surface layer of a grain-refined and tempered 9Ni steel broken at 77 K was studied through use of Möss-bauer spectroscopy and transmission electron microscopy. Thin foils revealing the mi-crostructural profile of the fracture surface layer were prepared by electroplating a thick pure iron layer on the fresh fracture surface, then thinning a profile sample through a combination of conventional twin-jet electropolishing and ion milling techniques. The re-sults of both Mössbauer spectroscopy and TEM studies showed that the thermally stable austenite transforms to a dislocated martensite in the deformed zone adjacent to the duc-tile fracture surface. This result suggests that transformation of the retained austenite present in tempered 9Ni steel is compatible with low temperature toughness, at least when the transformation product is a ductile martensite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.