Abstract

IntroductionThe importance of mechanical signals in normal and inflamed cartilage is well established. Chondrocytes respond to changes in the levels of proinflammatory cytokines and mechanical signals during inflammation. Cytokines like interleukin (IL)-1β suppress homeostatic mechanisms and inhibit cartilage repair and cell proliferation. However, matrix synthesis and chondrocyte (AC) proliferation are upregulated by the physiological levels of mechanical forces. In this study, we investigated intracellular mechanisms underlying reparative actions of mechanical signals during inflammation.MethodsACs isolated from articular cartilage were exposed to low/physiologic levels of dynamic strain in the presence of IL-1β. The cell extracts were probed for differential activation/inhibition of the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling cascade. The regulation of gene transcription was examined by real-time polymerase chain reaction.ResultsMechanoactivation, but not IL-1β treatment, of ACs initiated integrin-linked kinase activation. Mechanical signals induced activation and subsequent C-Raf-mediated activation of MAP kinases (MEK1/2). However, IL-1β activated B-Raf kinase activity. Dynamic strain did not induce B-Raf activation but instead inhibited IL-1β-induced B-Raf activation. Both mechanical signals and IL-1β induced ERK1/2 phosphorylation but discrete gene expression. ERK1/2 activation by mechanical forces induced SRY-related protein-9 (SOX-9), vascular endothelial cell growth factor (VEGF), and c-Myc mRNA expression and AC proliferation. However, IL-1β did not induce SOX-9, VEGF, and c-Myc gene expression and inhibited AC cell proliferation. More importantly, SOX-9, VEGF, and Myc gene transcription and AC proliferation induced by mechanical signals were sustained in the presence of IL-1β.ConclusionsThe findings suggest that mechanical signals may sustain their effects in proinflammatory environments by regulating key molecules in the MAP kinase signaling cascade. Furthermore, the findings point to the potential of mechanosignaling in cartilage repair during inflammation.

Highlights

  • The importance of mechanical signals in normal and inflamed cartilage is well established

  • Mechanoactivation of articular chondrocytes (ACs) leads to c-Myc, vascular endothelial cell growth factor (VEGF), and SRY-related protein-9 (SOX-9) mRNA expression VEGF, c-Myc, and SOX-9 are all involved in AC proliferation and differentiation

  • We determined whether mRNA expression for c-Myc, VEGF, and SOX-9 is upregulated in mechanoactivated ACs in the absence or presence of IL-1β

Read more

Summary

Introduction

The importance of mechanical signals in normal and inflamed cartilage is well established. Chondrocytes respond to changes in the levels of proinflammatory cytokines and mechanical signals during inflammation. Cytokines like interleukin (IL)-1β suppress homeostatic mechanisms and inhibit cartilage repair and cell proliferation. Chondrocytes located in the extracellular matrix are believed to relay mechanical signals through the plasma membrane via integrins [12,13]. Ras (p21), Rho, and Rac belonging to the GTPase family of proteins are stimulated following activation of ILK and certain growth factor receptors [16,17]. MEK1/2 activates extracellular receptor kinase 1/2 (ERK1/2) by phosphorylating Thr202/Tyr204. Cytokines like interleukin-1 (IL1) and tumor necrosis factor-alpha (TNF-α) phosphorylate ERK1/2 to regulate certain proinflammatory genes [20,21]. ERK1/2 translocates to the nucleus and activates transcription factors that are specific to the signals perceived by cells [22]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call