Abstract

Thick film gold metallization is required for many high reliability circuits, especially those subjected to operation in high temperature or high humidity environments. Traditionally, wire bonded bare die are used on these circuits, but there is a trend to replace them with BGA packaged devices. State-of-the-art, chip scale packages increase circuit volume by less than 20 percent, while their use greatly simplifies testing and repair, as compared to wire bonded die. The use of small, high density I/O pad arrays for attachment of BGA packages, necessitates very careful control of the solder reflow process to avoid excessive leaching of the gold into the solder. Also, unlike passive chip components and leaded devices, the solder filet associated with a solder ball attachment does not distribute mechanical loads over an extended area. Consequently, the stresses imposed on fine pitch, BGA pads are much higher than those imposed by other components. During aging, the gold metallization is converted to gold-tin intermetallic as inter-diffusion proceeds. This further reduces the mechanical integrity of the solder connection. This manifests itself in the observation that when BGA solder balls are subjected to accelerated aging followed by shear testing, the entire solder pad lifts off of the substrate, rather than failing in the solder joint. What we have done is construct a diffusion based model to estimate the conversion of a thick film gold metallization pad to intermetallic and coupled this result with a finite element analysis to examine the effect of pad size and solder composition on the propensity of a pad to lift off the substrate, when subjected to mechanical or thermal induced loading. We are designing experiments to compare the predictions of our model to experimental results obtained from shearing solder balls, of different compositions and sizes, attached to substrates metalized with several different solderable, thick film gold materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.