Abstract

The effect of variable amount of multiwalled carbon nanotubes on mechanical, rheological, and electrical properties of acrylonitrile–styrene–acrylate/Zn+2-poly(ethylene-co-methacrylic acid) ionomer blend system has been evaluated. Optical micrographs as well as alternating current conductivity data shows the formation of nanotube percolation network at 1 wt% nanotube content. The polymer/nanotube interaction increased the rate of tensile modulus to 55 GPa at low nanotube content. The polymer chain relaxation time was increased upto 1 wt% of nanotube content, but higher nanotube loading reduced the time. The zero-shear viscosity was function of nanotube content whereas the infinite-shear viscosity was independent of nanotube content.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call