Abstract
Pentadiamond is a recently proposed new carbon allotrope consisting of a network of pentagonal rings where both sp2 and sp3 hybridization are present. In this work we investigated the mechanical and electronic properties, as well as, the thermal stability of pentadiamond using DFT and fully atomistic reactive molecular dynamics (MD) simulations. We also investigated its properties beyond the elastic regime for three different deformation modes: compression, tensile and shear. The behavior of pentadiamond under compressive deformation showed strong fluctuations in the atomic positions which are responsible for the strain softening at strains beyond the linear regime, which characterizes the plastic flow. As we increase temperature, as expected, Young's modulus values decrease, but this variation (up to 300 K) is smaller than 10% (from 347.5 to 313.6 GPa), but the fracture strain is very sensitive, varying from ∼44% at 1 K to ∼5% at 300 K.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.