Abstract

A Cu-cored solder ball (CCSB) is often used as the interconnection material for 3D package. The CCSB has a Cu core surrounded by Sn-Ag-Cu alloy. The effect of the Cu core on mechanical reliability of the CCSB was investigated using thermal shock test. Microstructure and thermal shock reliability of the CCSB with organic solderability preservative (OSP) surface finish was compared with that of Sn-3.0wt.%Ag-0.5wt.%Cu (SAC) solder. The thermal shock test was performed in the temperature range of −40 °C to 125 °C in compliance with JESD22-A104. Failure mechanism was analyzed by finite element method analysis. Average number of thermal shock cycles for the CCSB/OSP joints was 1.15 times higher than that for SAC/OSP joints. Maximum value of simulated plastic strain for the SAC/OSP joints was 1.25 times higher than that for the CCSB/OSP joints because the stand-off height of the CCSB/OSP joints could be maintained by the Cu core.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.