Abstract

AbstractCe0.8Gd0.2O2−δ‐FeCo2O4 composites are attractive candidate materials for high‐purity oxygen generation providing robust chemical stability. Aiming for future industrial applications, a feasible solid‐state reaction process with one thermal processing step was used to synthesize 50 wt% Ce0.8Gd0.2O2−δ:50 wt% FeCo2O4 and 85 wt% Ce0.8Gd0.2O2−δ:15 wt% FeCo2O4 composites. Mechanical reliabilities of the sintered membranes were assessed based on the characterized mechanical properties and subcritical crack growth behavior. In general, the fracture strengths of as‐sintered membranes were reduced by tensile residual stresses and microcracks. In particular, the enhanced subcritical crack growth behavior, which leads to limited stress tolerance and high failure probability after a 10‐year operation, was evaluated in more detail. Further materials and processing improvements are needed to eliminate the tensile stress and microcracks to warrant a long‐term reliable operation of the composites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.