Abstract

Marine power cables connected to moving devices at sea may experience millions of load cycles per year, and thus they need to be flexible due to the movements of the cable and designed for mechanical loads. In this study, the focus is on the mechanical life of flexible low- and medium voltage power cables connecting devices to hubs. The reliability design method Variational Mode and Effect Analysis (VMEA) is applied, based on identifying and quantifying different types of uncertainty sources, including scatter, model and statistical uncertainties. It implements a load–strength approach that combines numerical simulations to assess the loads on the cable and experimental tests to assess the strength of the cable. The VMEA method is demonstrated for an evaluation of bending fatigue, and is found to be a useful tool to evaluate uncertainties in fatigue life for WEC (Wave Energy Converter) system cables during the design phase. The results give a firm foundation for the evaluation of safety against fatigue and are also helpful for identifying weak spots in the reliability assessment, thereby motivating actions in the improvement process. Uncertainties in terms of scatter, statistical uncertainty and model uncertainty are evaluated with respect to the WaveEL 3.0, a WEC designed by the company Waves4Power, and deployed in Runde, Norway. A major contribution to the overall uncertainty is found to originate from the fatigue life model, both in terms of scatter and model uncertainty.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call