Abstract

The mechanical relaxation behaviors of a Cu60Zr40 metallic glass were investigated by using isothermal multi-frequency dynamic mechanical measurements. From the spectra of the elastic moduli, master curves were constructed using the time-temperature superposition principle. The temperature dependence of the shift factor was found to follow the Arrhenius relationship in two temperature regions, one below and the other above the glass transition temperature (Tg), and the activation energies for low-temperature relaxation and viscous flow were 32.7 kJ/mol and 307.1 kJ/mol, respectively. The decoupling of these two relaxations, shown in the temperature dependent plot of the shift factor, manifests the dynamic glass transition temperature region of the Cu60Zr40 metallic glass. From the temperature dependence of the shift factor, the fragility index of this alloy was also estimated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call