Abstract
C/C–ZrB2–ZrC–SiC composites were fabricated by polymer infiltration and pyrolysis (PIP) with a preform of Cf/ZrB2. The carbon fibers and the resin carbon were coated with ceramic layer after PIP in the composites. The composite presents a pseudo-plastic fracture due to deflection of cracks and pullout of fibers. The composite has a higher bending strength by this method in comparison with the conventional PIP process due to fewer heat treatment cycles. The static oxidation test shows that the mass loss of the composites is no more than 1% after 20 min oxidation at 1100 °C. The “core–shell” structure between ZrC–SiC ceramic and other phases plays a positive role in preventing the inward diffusion of oxygen. The ablation resistance of the C/C–ZrB2–ZrC–SiC composite samples was tested using a plasma generator. After ablation for 120 s, the mass and linear ablation rates of the composites are 4.65 mg cm−2 s−1 and 2.46 µm s−1, respectively. The short carbon layer shows a better ablation resistance than the nonwoven carbon fabric layer after the ceramic coating is peeled off because of its higher ceramic content.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.