Abstract

Long Fiber Reinforced Thermoplastic (LFT) is a lightweight, high-strength, and easy-to-recycle new vehicle composite material, and has good mechanical properties, heat resistance, and weather resistance, which has found increasing application in automobile industry. It is of importance to understand the relationship between micro phase, macro-mechanical properties and the structural performance of automobile components. This article evaluates the performance of LFT from the level of material to automobile components. The mechanical properties of LFT were numerically and theoretically predicted to provide instruction for the next material choice. Two typical structural components, namely, car seat frame and bumper beam, were selected to evaluate the performance of LGF/PP compared with other competing materials in terms of mechanical properties and cost. In the case of the same volume, the seat frame of 40% LECT/PP composite material is lighter and cheaper, which is conducive to energy saving and emission reduction. It was shown that the 40% LECT/PA66 car bumper beam had a higher energy absorption ratio, lighter weight, higher specific energy absorption, and advantageous material cost. LFT is a promising candidate for existing automobile components with its performance fulfilling the requirements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.