Abstract
Self-bonded natural fiber material (SNFM) is a promising alternative for plastic and wood owing to its abundant raw material resources and low environmental impact. In this study, a high-performance SNFM was developed by the comprehensive treatments for the plasticity and structure of fiber cell walls. The cell wall structure was treated by a progressive chemical etching process for selectively removing surface lignin, internal lignin and hemicelluloses, respectively. The cell wall plasticity was tuned by controlling the fiber moisture content during compression molding process. The results showed that the increase in fiber plasticity improved the tensile strength from 38.0 to 83.5 MPa and the flexural strength from 31.2 to 73.3 MPa. The selective removal of surface lignin increased the flexural strength from 101.3 to 122.1 MPa. The functional relationships among mechanical strength, lignin content, hemicellulose content and moisture content were established. The self-bonded mechanism for natural fiber materials was also discussed. The SNFM products showed excellent mechanical performance (tensile strength: 21.5–83.5 MPa; flexural strength: 31.2–127.3 MPa), which was superior to that of natural wood (46.5–55.6 MPa; 70.7–92.4 MPa) and plastic (15.9–51.0 MPa; 21.7–73.0 MPa) (e.g., HDPE, PP, PVC, and ABS).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.