Abstract
Chemical changes, measured using spectrocopy, and crosslink density, measured by mechanical thermal analysis, were determined during accelerated weathering on a model polyester-urethane coating of known composition. The tensile modulus, measured above the glass transition temperature, and thus the crosslink density, decreased with exposure, as expected from the chemical changes. However, the tensile modulus, measured at room temperature, increased with exposure. Physical aging of the polymer network was found to occur concurrently with photodegradation and accounts for much of the increase in room temperature modulus. Increased hydrogen bonding in the increasingly oxidized polyester-urethane may also contribute to the increase in modulus at room temperature. Both physical and chemical changes must be determined if changes, and rates of change, in performance due to weathering are to be understood.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.