Abstract

Synthesized through sol-gel processing were Ormosil type hybrid gels containing varied mass fractions of colloidal silica, poly (dimethylsiloxane) (PDMS), tetraethoxysilane (TEOS) and calcium nitrate. Viscoelasticity, mechanical strength and 29 Si MAS NMR spectra were measured, and in vitro apatite deposition in a simulated body fluid (SBF) of the Kokubo recipe was examined. The relative height of a Tg peak at about -100°C in tan δ versus temperature curves grew with the colloidal silica content. This peak growth was accounted for the relative increase in PDMS-colloidal silica interactions. As the increase in the compressive strength followed the increase in colloidal silica content, the number of PDMS-silica bonds and hydrogen bond of colloidal silica increased due to the NMR spectra and tan δ curve. Thus, mechanical strength was dependent on PDMS-silica bonds and the hydrogen bond of colloidal silica. On the other hand, as the relative PDMS content increased, the number of PDMS-silica bonds was little influenced while PDMS chain structure increased. The gel (with a molar ratio TEDS:PDMS:H 2 O:HCl:Ca (NO 3 ) 2 .4H 2 O=1:0.48:5.0:0.9:0.10) containing 14 mass% colloidal silica (CS 14 P 0.48 Ca 0.10 ) exhibited the highest maximum failure strain (about 70%) among all samples. Thus, the relative content of PDMS chain structure depending on PDMS content influenced the maximum failure strain. CS 14 P 0.48 Ca 0.25 could not deposit apatite within 7 d after soaking in SBF, while PDMS/TEOS=0.24 (molar ratio) could deposit apatite within 3 d. The increase in PDMS content restrained the dissolution of Ca ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.