Abstract

The rising amount of construction and demolition wastes (C & DWs) is triggering serious environmental and social problems globally. This study conducted an experimental investigation of basalt fiber (BF)-reinforced concrete with recycled aggregates (RAs) sourced from C & DWs. The flexural strength, the flexural to compressive strength ratio, and the drying shrinkage are set as indicators for the evaluation of the coupling effect of BF and RA in concrete. Results show that BF generated a significant effect on the flexural strength until the BF dosage was no higher than 1%. The excessive mixing amount of BF, though it still contributed to a positive effect on elevating the flexural strength, was of a reduced utility. Regarding the flexural to compressive strength ratio (denoted as ratio), BF and RA jointly produced a positive synergistic effect. In addition, the BF was verified as competent in curbing the adverse effect of RA incorporation upon the drying shrinkage. Relative to the benchmark concrete which contains 100% RA and no BF, 1% BF contributed to a 31.6% reduction in the drying shrinkage. The results prove that BF reinforcement is a feasible and promising approach to curb the drawbacks of RA concrete.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call