Abstract

PurposeThe purpose of this research is to evaluate construction and industrial waste materials in concrete using different additives.Design/methodology/approachThe experimental study investigated the effect of waste foundry sand (WFS), waste glass (GW) as partial substituent to natural sand and addition of waste glass fibers (GFs) and silica fume (SF) in natural/construction waste aggregate concrete on mechanical properties, durability and microstructure using.FindingsThe results reveal significant strength enhancement on using two admixtures, the maximum increase in compressive strength was obtained on using 20% WFS and 0.75% GF for both natural (75% increment) and construction waste (72% increment) coarse aggregates. Using three admixtures simultaneously, the maximum enhancement in compressive strength was found for (WFS(20%) + GW(10%) + GF(0.75%)) for both natural aggregates (122% increment) and construction waste (114% increment) coarse aggregates as compared to control mix. The 28 days split tensile and flexural strength of natural/construction waste aggregate concrete improve with age appreciably for optimal contents of single, two or three admixtures and the maximum tensile and flexural strength increment was 135 and 97% for mix (WFS(20%) + GW(10%) + GF(0.75%)) with natural aggregates as compared to control mix. The microstructural analysis results indicate improved microstructure upon partial substitution of sand with WFS, GW and SF along with addition of waste GFs.Originality/valueThe use of construction and industrial waste as a substituent to natural aggregate/sand will provide far reaching benefits for the green construction and the environment at large.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call