Abstract

Three kinds of 780 MPa grade ultra-fine grained steels with different chemical composition were produced by warm rolling. The steels were characterized by ultra-fine ferrite grains (less than 1 μm). With the steels strength-overmatching welded joints were prepared, and their mechanical properties were investigated. It is found that softening occurred in the heat-affected zone (HAZ) because of the coarsening of ferrite grains due to welding heat input. However, by using low welding heat input and strength-overmatching weld metal, the detrimental effect of softening on strength was restrained, and welded joints with strength equivalent to that of base metal were obtained. The deformability of welded joints was found to be related to the yield ratio (yield strength / tensile strength) of base metal. Low yield ratio is desirable to the deformability of welded joints. The HAZs in the welded joints of low welding heat input of 10 kJ/cm have good impact toughness for all the steels. Except for 0.14C-0.30Si-1.46Mn steel, the HAZs in the welded joints formed from the other two steels also have good impact toughness for welding heat input of 20 kJ/cm, and their fracture appearance transition temperature (vTrs) of the HAZs is lower than -40°C, and their Charpy impact energy at -40°C exceeds 200 J.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call