Abstract

Magnetic resonance elastography (MRE) is an imaging modality with which mechanical properties can be noninvasively measured in living tissue. Magnetic resonance elastography relies on the fact that the elastic shear modulus determines the phase velocity and, hence the wavelength, of shear waves which are visualized by motion-sensitive MR imaging. Local frequency estimation (LFE) has been used to extract the local wavenumber from displacement wave fields recorded by MRE. LFE -based inversion is attractive because it allows material parameters to be estimated without explicitly invoking the equations governing wave propagation, thus obviating the need to numerically compute the Laplacian. Nevertheless, studies using LFE have not explicitly addressed three important issues: (1) tissue viscoelasticity; (2) the effects of longitudinal waves and rigid body motion on estimates of shear modulus; and (3) mechanical anisotropy. In the current study we extend the LFE technique to (1) estimate the (complex) viscoelastic shear modulus in lossy media; (2) eliminate the effects of longitudinal waves and rigid body motion; and (3) determine two distinct shear moduli in anisotropic media. The extended LFE approach is demonstrated by analyzing experimental data from a previously-characterized, isotropic, viscoelastic, gelatin phantom and simulated data from a computer model of anisotropic (transversely isotropic) soft material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.