Abstract

To determine how transmembrane osmotic gradients perturb the structure and dynamics of biological membranes, we examined the effects of medium dilution on the structures of osmolyte-loaded lipid vesicles. Our preparations were characterized by dynamic light scattering (DLS) and nuclear magnetic resonance (NMR) spectroscopies. Populations of Escherichia coli phosphatidylethanolamine (PE) or dioleoylphosphatidylglycerol (DOPG) vesicles prepared by the pH jump technique were variable and polymodal in size distribution. Complex and variable structural changes occurred when PE vesicles were diluted with hypotonic buffer. Such vesicles could not be used as model systems for the analysis of membrane mechanical properties. NaCl-loaded, DOPG vesicles prepared by extrusion through 100 nm (diameter) pores were reproducible and monomodal in size distribution and unilamellar, whereas those prepared by extrusion through 200-, 400-, or 600-nm pores were variable and polymodal in size distribution and/or multilamellar. Time and pressure regimes associated with osmotic lysis of extruded vesicles were defined by monitoring release of carboxyfluorescein, a self-quenching fluorescent dye. Corresponding effects of medium dilution on vesicle structure were assessed by DLS spectroscopy. These experiments and the accompanying analysis (Hallett, F.R., J. Marsh, B.G. Nickel, and J.M. Wood. 1993. Biophys. J. 64:000-000) revealed conditions under which vesicles are expected to reside in a consistently strained state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.