Abstract
This study investigated the use of recycled glass aggregate (RG) as unbound base/subbase material. The experimental tests included compaction, Los Angeles, Micro-Deval, and California bearing ratio (CBR) tests. In this regard, a fine proportion of course limestone aggregate (MG20) was replaced by RG with size ranging from 0 to 5 mm based on the volumetric method. Adding RG to the coarse aggregate improved durability in wet conditions, which is more representative of the field condition of Canada/Quebec, but decreased in dry conditions. CBR values decreased with increasing RG inclusion, but all blends with 0%–100% RG in the fine fraction of MG20 met minimum requirements for unbound granular layers in Quebec. A simple model predicting the resilient modulus values of these materials based on CBR values at different stress levels was suggested. This equation estimates Mr values of various aggregate-RG blends under a wide range of mean stresses based on their CBR values.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.