Abstract

Mechanical properties in conjunction with microstructural evolution during annealing of 5052 Al alloy deformed at cryogenic temperature were investigated and compared with those yielded by the ARB process. ARB was conducted up to 7 cycles under conditions where the reduction in thickness per cycle was 50% and the rolling temperature was 300°C. To investigate the effect of annealing temperature, cryo-rolled sheets with 85% reduction were annealed in a temperature range of 150≈300°C for one hour. Strengths of 5052 Al alloy ARB processed at 300°C increased with increasing number of cycles and decreased rapidly after 6 or 7 cycles. This indicated that, during the ARB process, work hardening proceeded at low strains and subdivision of grains and dynamic recovery occurred at high strains. Tensile strength and yield strength of cryo-rolled 5052 Al alloy decreased as the annealing temperature increased. The volume fraction of recrystallized and coarsened grains appeared to have the most significant influence on strength and ductility in sheets annealed at 250°C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.