Abstract

Understanding the mechanical behaviour of pure titanium ( Ti ) foam is crucial for the design and development of Ti foam-based load-bearing implants. In this work, pure titanium foam is fabricated by a powder metallurgical process using the space-holder technique with a spacer size of 500 to 800 µm. Experimental data from static compression testing on the Ti foam are presented. The application of theoretical formulae to predict Young's modulus and yield strength of titanium foams is also discussed. A foam with 63% porosity, 87 ± 5 MPa yield strength, and 6.5 ± 1.3 GPa Young's modulus is found to be appropriate for a number of dental and orthopaedic applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call