Abstract

As a typical intermetallic material, TiAl is inevitably difficult to process by conventional methods. Additive manufacturing (AM) has recently become a new option for making net-shape TiAl components. Among all AM methods, electron beam melting (EBM) shows the potential to make TiAl components with good mechanical properties and is used for low pressure turbine blades. The mechanical properties, including tensile and compression properties, fracture toughness, fatigue and creep properties of EBM TiAl are reviewed and compared to the conventionally fabricated alloys. Results show that the tensile strength of EBM alloys is higher than cast alloys, and other properties are comparable to the cast/forged alloys. The sensitivity of mechanical properties and microstructure to EBM processing parameters is presented. Issues including layered microstructure, anisotropy in mechanical properties, and fatigue failure from defects are also reviewed. Finally, some opportunities and challenges of EBM TiAl are identified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call