Abstract

This study investigated the mechanical properties of thermoplastic natural rubber (TPNR) nanocomposites reinforced by multi-walled carbon nanotubes (MWNTs). The TPNR nanocomposites were prepared using melt blending method from polypropylene, natural rubber, and liquid natural rubber as a compatibilizer, respectively, with 1—7 wt% of MWNTs. The tensile strength and Young’s modulus increased by almost 39% and 30%, respectively, at 3 wt% of MWNTs. The elongation at break decreased with increase in the percentage of MWNTs. The maximum impact strength was recorded at 5 wt% of MWNTs which was increased by 74% as compared with a pristine TPNR sample. The effect of MWNTs was also confirmed by DMA; it showed that the storage modulus E′, loss modulus E′′, and glass transition temperature (Tg) also increased for all MWNT reinforced samples. SEM micrographs confirm the effect of good dispersion of MWNTs and their interfacial bonding in TPNR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call