Abstract

In this study we investigated the mechanical properties of composite hydrogels based on a polyacrylamide (PAAm) matrix with embedded temperature sensitive poly(N-isopropylacrylamide) (PNiPAM) microgels. We analysed the mechanical properties of the composite material with tensile tests, shear and cavitation rheology. The results of the different experiments displayed an enhancement of mechanical stability with increasing concentration of incorporated microgels. The improved stability is related to an increase of physical cross-linking points due to the incorporation of the microgels. The incorporation of temperature responsive microgel particles introduces temperature sensitive mechanical behaviour of the composite hydrogels. The collapse of the microgels inside the polyacrylamide matrix leads to a change of the volume of the filler particles as well as to a change from a soft filler to a hard filler. The influence of the hard particles on the mechanical stability of the matrix is much stronger which leads to materials with enhanced mechanical properties at high temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.