Abstract

Topological defects in highly repetitive structural proteins strongly affect their mechanical properties. However, there are no universal rules for structure-property prediction in structural proteins due to high diversity in their repetitive modules. Here, we studied the mechanical properties of tandem-repeat proteins inspired by squid ring teeth proteins using rheology and tensile experiments as well as spectroscopic and X-ray techniques. We also developed a network model based on entropic elasticity to predict structure-property relationships for these proteins. We demonstrated that shear modulus, elastic modulus, and toughness scale inversely with the number of repeats in these proteins. Through optimization of structural repeats, we obtained highly efficient protein network topologies with 42 MJ/m3 ultimate toughness that are capable of withstanding deformations up to 350% when hydrated. Investigation of topological network defects in structural proteins will improve the prediction of mechanical properties for designing novel protein-based materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call