Abstract

Fibers of 21 rigid-rod aromatic polyamides with different substitution patterns at their aromatic rings, produced by polycondensation of functionalized p-phenylenediamine and functionalized terephthaloyl dichloride and spun from nematic solutions as described in the accompanying paper (B. H. Glomm, M. C. Grob, P. Neuenschwander, and U. W. Suter, Macromol. Chem. Phys.), were characterized by the mechanical properties most relevant for compressive failure. In particular, the torsional moduli G0 and the axial compressive strength σC were determined for each fiber sample before and after employing a post-spinning heat treatment optimized to improve the degrees of orientation and the crystallinity of the fibers. The dependence of the measured values on the structural parameters of the respective polymers was studied, leading to the result that the volume of the side-chains of the studied aramids seems to influence the extent of the mechanical “anisotropy” of the fibers, probably through an effect on the interchain interactions. The relationship between the torsional modulus and the axial compressive strength was scrutinized in the light of the theoretical approach of DeTeresa, Allen, and Farris, and Allen, which suggests the existence of a proportionality between G0 and σC. In general, the results provided by our experiments are consist with this theoretical approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.