Abstract

Steel fibre reinforced concrete (SFRC) is an advanced cementitious composite where fibres can act as a profitable replacement for diffused reinforcement, like welded steel mesh, especially for thin cross sections. In this case fire becomes a very important condition in the design. Previous experimental research has shown the benefits in fire resistance of steel fibres, when structural elements are bent. A careful mechanical characterization of a SFRC used for prefabrication after thermal cycles at high temperature is here presented. Three different tests are considered: four point bending, uniaxial compression and fixed-end uniaxial tension. In the paper the decay of peak and post-cracking strengths versus temperature increase for uniaxial compression, uniaxial tension and bending are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.