Abstract

Biomechanical responses of stems of 6- to 7-year-old spruce [Picea abies (L.) Karst.] and beech (Fagus sylvatica L) trees were studied after 4 years of growth in elevated atmospheric CO2 in combination with a nitrogen treatment and on two different soil types. At the end of the treatment, stems were harvested and tested in fresh and air-dried status. Bending characteristics of juvenile wood (modulus of elasticity, termed rigidity) were determined by bending tests. Fracture characteristics (termed toughness) were determined by stroke-pendulum tests. From the base disk of each stem densitometric data were obtained. In spruce, wood produced under elevated CO2 was tougher on both soil types; enhanced N deposition made wood less rigid only on acidic soils. In contrast, beech wood samples showed no significant reaction to CO2 but were significantly tougher under high nitrogen depositions on acidic soil. Effects on wood density of both CO2 and N treatments were not significant, but wood density was higher on acidic soil and so were rigidity and toughness (soil effect). Different genotypes of spruce and beech reacted significantly differently to the treatments. Some genotypes reacted strongly to CO2 or N, whereas others did not react or showed interactions between CO2 and N. This underlines the importance of genetic diversity in tree communities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.