Abstract

Despite the increased usage of pearlitic compacted graphite iron (CGI) in heavy vehicle engines, poor machinability of this material remains as one of the main technical challenges as compared to conventional lamellar iron. To minimise the machining cost, it is believed that solution-strengthened CGI material with a ferritic matrix could bring an advantage. The present study focuses on the effect of solution strengthening of silicon and section thickness on tensile, microstructure and hardness properties of high-Si CGI materials. To do so, plates with thicknesses from 7 to 75 mm were cast with three different target silicon levels 3.7, 4.0 and 4.5 wt%. For all Si levels, the microstructure was ferritic with a very limited pearlite content. The highest nodularity was observed in 7 and 15 mm plate sections, respectively, however, it decreased as the plate thickness increased. Moreover, increasing Si content to 4.5 wt% resulted in substantial improvement up to 65 and 50% in proof stress and tensile strength, respectively, as compared to pearlitic CGI. However, adding up Si content to such a high level remarkably deteriorated elongation to failure. For each Si level, results showed that the Young’s modulus and tensile strength are fairly independent of the plate thickness (30–75 mm), however, a significant increase was observed for thin section plates, particularly 7 mm plate due to the higher nodularity in these sections.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.