Abstract

An atomic force microscopy (AFM)-based nanoindenter was used to evaluate the mechanical properties of skeletal bones in wild-type and gene-mutated zebrafish ( Danio rerio), stöpsel dtl28d . Both skeletons were isolated from adult zebrafish and tested under a load of 5 mN. It was found that stp/ stp bone has a similar nanohardness but significantly greater elastic modulus compared with that of wild-type bone. The residual indenter impressions using AFM and the fracture surfaces of both bones using scanning electron microscopy were examined and showed that the bone of zebrafish becomes more brittle after the stp mutation. This first observation of the alteration of bone mechanical behavior by gene mutation in zebrafish system is of scientific and clinical relevance to many areas of study, such as bone fracture and fragility mechanisms in human heritable disorders and bone-materials fabrication via gene engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.