Abstract
AbstractThe surface treatment of spherical silica particles with a silane coupling agent with mercapto groups was carried out. The treated silica particles were incorporated within polyisoprene and then vulcanized. The effects of the loading amount and alkoxy group number of silane on the stress–strain curve of the filled composite were investigated. For this purpose, silanes with dialkoxy and trialkoxy structures were used. The loading amount of silane on the silica surface was varied from 1 to 8 times the amount required for monolayer coverage. The stress at the same strain increased with the silane treatment, and it was higher in the dialkoxy structure than in the trialkoxy structure above 300% strain. There was no significant influence of the loading amount on the stress for the trialkoxy silane structure. However, the stress was influenced by the loading amount, and the maximum stress was observed at 4 times the silane amount required for monolayer coverage for the dialkoxy structure. The stress had a good relationship with the crosslinking density of silica‐filled polyisoprene rubber (measured with a swelling test). The reinforcement effect by the silane treatment of silica was found to be affected strongly both by the entanglement of the silane chain and polyisoprene rubber matrix and by the crosslinking reaction between the mercapto group of silane and polyisoprene rubber in the interfacial region. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.