Abstract

Stress-strain tests were performed both on shock-damaged gabbro and limestone. The effective Young's modulus decreases with increasing initial damage parameter value, and an apparent work-softening process occurs prior to failure. To further characterize shock-induced microcracks, the longitudinal elastic wave velocity behavior of shock-damaged gabbro in the direction of compression up to failure was measured using an acoustic transmission technique under uniaxial loading. A dramatic increase of velocity was observed for the static compressive stress range of 0–50 MPa. Above that stress range, the velocity behavior of lightly damaged ( D 0 < 0.1 ) gabbro is almost equal to unshocked gabbro. The failure strength of heavily damaged ( D 0 > 0.1 ) gabbro is ∼100−150 MPa, much lower than that of lightly damaged and unsh gabbros ( ∼230−260 MPa). Following Nur's theory, the crack shape distribution was analyzed. The shock-induced cracks in gabbro appears to be largely thin penny-shaped cracks with c/a values below 5 × 10 −4 . Moreover, the applicability of Ashby and Sammis's theory relating failure strength and damage parameter of shock-damaged rocks was examined and was found to yield a good estimate of the relation of shock-induced deficit in elastic modulus with the deficit in compressive strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.