Abstract

Understanding the controls on the elastic properties of reservoir rocks is crucial for exploration and successful production from hydrocarbon reservoirs. We studied the static and dynamic elastic properties of shale gas reservoir rocks from Barnett, Haynesville, Eagle Ford, and Fort St. John shales through laboratory experiments. The elastic properties of these rocks vary significantly between reservoirs (and within a reservoir) due to the wide variety of material composition and microstructures exhibited by these organic-rich shales. The static (Young’s modulus) and dynamic (P- and S-wave moduli) elastic parameters generally decrease monotonically with the clay plus kerogen content. The variation of the elastic moduli can be explained in terms of the Voigt and Reuss limits predicted by end-member components. However, the elastic properties of the shales are strongly anisotropic and the degree of anisotropy was found to correlate with the amount of clay and organic content as well as the shale fabric. We also found that the first-loading static modulus was, on average, approximately 20% lower than the unloading/reloading static modulus. Because the unloading/reloading static modulus compares quite well to the dynamic modulus in the rocks studied, comparing static and dynamic moduli can vary considerably depending on which static modulus is used.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call