Abstract

Semi-interpenetrating polymeric network (semi-IPN) hydrogels based on poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(2-hydroxyethyl methacrylate-co-sodium methacrylate) [P(HEMA-co-SMA)], and chitosan with different molecular weights were prepared by crosslinking with ethylene glycol dimethacrylate (EGDMA) and poly(ethylene glycol) diacrylate (PEGDA) and their gelation time, water content, mechanical properties, and morphology were investigated. In consideration of the influence of the molecular weight of chitosan, there is no big difference in the water content, while tensile properties and compressive modulus increased as the molecular weight of chitosan increased. The water content increased and tensile properties and compressive modulus decreased with increasing SMA concentration. Considering the effect of the crosslinking agent, PEGDA had higher water content and lower tensile and compressive moduli than EGDMA. It is suggested that PHEMA/chitosan and P(HEMA-co-SMA)/chitosan semi-IPN hydrogels with different structures and physical properties can be prepared depending on the molecular weight of chitosan, the copolymerization with SMA, and the crosslinking agent type.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call