Abstract

ABSTRACT: The deformation and fracture of rock mass in deep rock mass engineering are affected by the coupling of temperature, seepage, and stress. A test and a calculation model for sandstone under thermal–hydrological–mechanical (THM) coupling were proposed to reveal the mechanical properties of sandstone. The law of coupling for mechanical indicators of sandstone was established by laboratory tests and numerical simulations. The permeability, peak strength, peak strain, residual strength, elastic modulus, plastic deformation area, and stress–strain cloud diagram were analyzed by the steady state seepage method and THM coupling principle, and the accuracy of the model was verified. Results demonstrate that: (1) As the temperature rises and the peak deformation increases, the sample slowly drops to the residual strength level after the peak stress. (2) The main factor that affects peak strength is confining pressure. In the temperature range of 25 °C–50 °C, the maximum peak strength and peak deformation are increased by heating, and the increases in confining pressure and temperature reduce the reduction coefficient of the residual strength. Moreover, the elastic modulus increases with the increase in confining pressure, but it shows a downward trend when the temperature increases. (3) The plastic deformation zone and stress–strain cloud diagram indicated that when the temperature and osmotic pressure increase, the specimen enters the plastic zone earlier, the effective plastic zone increases, the stress increases, and the deformation is intensified. The proposed method provides a certain reference for the permeability and stability evaluation of rock mass under the conditions of “three-high” (high confining pressure, high hydraulic pressure, and high stress) engineering. Keywords: temperature–seepage–stress coupling, sandstone, mechanical properties

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.