Abstract

Corrosion of reinforcing steel has a great impact on the mass reduction and high- and low-cycle fatigue. An experimental study showed that the mass loss, the fatigue limit and the life expectancy were reduced by approximately 1.50-3.00%, 20-40%, and 55-75%, respectively, according to the level of corrosion. Low-cycle strain controlled fatigue testing under ±1% and ±2.5% constant amplitude strain, indicated that the corroded steel bars exhibit gradual reduction in available energy, number of cycles to failure and the load-bearing ability. Formation of pits and notches took place on the corroded steel surface and stress concentration points were developed which are highly localized at imperfections and especially at the rib bases. The fatigue limit was reduced considerably since the existence of ribs and the formation of pits and notches combined with the mass loss led to reduction of the exterior hard layer of martensite and drastic drop in the energy density of the corroded specimens. Antiseismic design that does not take into account the maximum and cumulative plastic deformation demands and the strain history that a structure will suffer under severe ground motion could lead to unpredictable performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call