Abstract

Traditional techniques of construction using natural and locally available materials are nowadays raising the interest of architects and engineers. Clayey soil is widely present in all continents and regions, and where available it is obtained directly from the excavation of foundations, avoiding transportation costs and emissions due to the production of the binder. Moreover, raw earth is recyclable and reusable after the demolition, thanks to the absence of the firing process. The rammed earth technique is based on earth compressed into vertical formworks layer by layer to create a wall. This material owes its strength to the compaction effort and due to its manufacture procedure exhibits layers resembling the geological strata and possessing high architectural value. The hygroscopic properties of rammed earth allow natural control of the indoor humidity, keeping it in the optimal range for human health. Stabilization with lime or cement is the most common procedure to enhance the mechanical and weather resistance at once. This practice compromises the recyclability of the earth and reduces the hygroscopic properties of the material. The use of different natural stabilizers, fibers, and natural polymers by-products of the agriculture and food industry, can offer an alternative that fits the circular economy requirements. The present study analyses the mechanical strength of an Italian earth stabilized with different local waste and recycled materials that do not impair the final recyclability of the rammed earth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call