Abstract

BackgroundThe objective of this study was to characterize and compare the mechanical properties of porcine pericranium and spinal dura mater, to evaluate the mechanical suitability of pericranium as a dural graft. MethodEighty-eight spinal dura (cervical, thoracic, and lumbar regions, in ventral longitudinal, dorsal longitudinal and circumferential orientations) and eighteen pericranium samples (ventral-dorsal, and lateral orientations) from four pigs, were harvested and subjected to uniaxial loading while hydrated. The stiffness, strain at toe-linear regions transition, strain at linear-yield regions transition and other structural and mechanical properties were measured. Stress-strain curves were fitted to a one-term Ogden model and Ogden parameters were calculated. Linear regression models with cluster-robust standard errors were used to assess the effect of region and orientation on material and structural properties. ResultsBoth spinal dura and pericranium exhibited distinct anisotropy and were stiffer in the longitudinal direction. The tissues exhibited structural and mechanical similarities especially in terms of stiffness and strains in the linear region. Stiffness ranged from 1.28 to 5.32 N/mm for spinal dura and 2.42–3.90 N/mm for pericranium. In the circumferential and longitudinal directions, the stiffness of spinal dura specimens was statistically similar to that of pericranium in the same orientation. The strain at the upper bound of the linear region of longitudinal pericranium (28.0%) was statistically similar to that of any spinal dura specimens (24.4–32.9%). ConclusionsAutologous pericranium has advantageous physical properties for spinal duraplasty. The present study demonstrated that longitudinally oriented pericranium is mechanically compatible with spinal duraplasty procedures. Autologous pericranium grafts will likely support the mechanical loads transmitted from the spinal dura, but further biomechanical analyses are required to study the effect of the lower yield strain of circumferential pericranium compared to spinal dura. Finally, the Ogden parameters calculated for pericranium, and the spinal dura at each spinal level, will be useful for computational models incorporating these soft tissues.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call