Abstract

With an aim of obtaining aluminum P/M materials strengthened by dispersion of transition metal compounds and solid solution of Mg , Al -2 mass % Co and Al -5 mass % Co alloys with varied Mg additions of 0, 1 and 5 mass% were prepared by rapid solidification techniques. Rapidly solidified flakes were produced by argon gas atomization and subsequent splat quenching on a water-cooled copper roll. The flakes were consolidated to the P/M (Powder metallurgy process is named as P/M) materials by hot extrusion after vacuum degassing. Cast ingots of these alloys were also hot-extruded under the same conditions to the I/M (Ingot metallurgy process is named as I/M) reference materials. Uniform dispersion of fine intermetallic compounds ( Co 2 Al 9) was observed in all the as-extruded P/M materials. Added Mg was present as the solute in the P/M and I/M materials alloy even after annealing at 773K. The P/M materials containing Mg exhibited higher hardness and strength than those without Mg at room temperature. Tensile strength increased with increasing amount of Mg in the I/M materials at elevated temperatures. However, strength of the P/M materials decreased with addition of Mg at 573K and 673K. According to the steady state creep rate and creep rapture time, the creep resistance of the P/M materials containing Mg was clearly inferior to that of Mg -free alloys. Thus the positive effects of Mg additions on mechanical properties of the P/M materials of Al - Co - Mg alloys disappeared at high temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.