Abstract
Bamboo fibres are one of the sustainable lignocellulosic resources explored for polymer composites in recent years. Research has shown that bamboo fibres have the potential to be used in a variety of critical applications. Nevertheless, bamboo fibres are susceptible to thermal and hygroscopic loads, and their mechanical properties are limited by the unequal interfacial strength and varying fibre dimensions. Implementing hybrid procedures or incorporating alternative materials, such as aluminium metal, is strongly advised to address this issue. Thus, this study investigates the tensile and flexural performances of the hybrid bamboo fibre/aluminium expanded mesh-reinforced polymer composites. The composites were fabricated using epoxy resin reinforced with bamboo fibre, and an aluminium expanded mesh sheet was constructed using a vacuum infusion process utilising various stacking sequences and mesh sizes. The test findings indicated that the composite material exhibited tensile stress values ranging from 27 to 34 MPa and a corresponding tensile strain value between 1.1% and 1.6%. The flexural strength and strain values were measured within the range of 44 Mpa to 59 Mpa and 2.2% to 3.2%, respectively. ANOVA analysis showed that both stacking sequences and mesh size significantly affected the tensile performances of the composites, while only stacking sequences affected the flexural performance significantly. Overall, a hybrid composite of bamboo fibre and aluminium mesh is well-suited as a substitute material in industries requiring exceptional mechanical properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.