Abstract

The mechanical properties of NiAl-Y2O3-based powdered composite alloys (0.5–7.5 vol %), including those with an NiAl intermetallic matrix alloyed with 0.5 wt % Fe and 0.1 wt % La have been studied. Structures with various aspect ratios (AR, the ratio of the grain length to the grain diameter) are formed using deformation and subsequent annealing. A combination of the optimum amount of strengthening phase (2.5 vol % Y2O3) and a quasi-single-crystalline structure with a sharp axial texture with the (100) main orientation and AR ≈ 20–40 provides the maximum short-term strength and life at temperatures up to 1400–1500°C. An NiAl-Y2O3 alloy (2.5 vol %) has the best strength properties among all known nickel superalloys at temperatures higher than 1200°C and can operate under moderate loads at temperatures higher than the working temperatures of nickel superalloys (by 100–400°C) and their melting points. Additional alloying with 10 wt % Co and 2 wt % Nb makes it possible to increase the ultimate tensile strength of an intermetallic NiAl matrix at 1100°C by a factor of 1.3–1.4.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.