Abstract
Molecular dynamic (MD) simulation was employed to take the molecular fingerprint of mechanical properties of beryllium-oxide nanotubes (BeONTs). In this regard, the effect of the radius, the number of walls (single-, double-, and triple-walled), and the interlayer distance, as well as the temperature on the Young's modulus, failure stress, and failure strain, are visualized and discussed. It was unveiled that larger single-walled BeONTs have lower Young's modulus in zigzag and armchair direction, and the highest Young's modulus was obtained for the (8,0) zigzag and (4,4) armchair SWBeONTs as of 645.71 GPa and 624.81 GPa, respectively. Unlike Young's modulus, however, the failure properties of the armchair structures were higher than those of zigzag ones. Furthermore, similar to SWBEONTs, an increase in the interlayer distance of double-walled BeONTs (DWBeONTs) led to a slight reduction in Young's modulus value, while no meaningful trend was found among failure behavior. For double-walled BeONTs (TWBeONTs), the elastic modulus was obviously higher in both armchair and zigzag directions compared to DWBeONTs.
Submitted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.