Abstract

The mechanical properties of alkoxy‐derived, high‐purity, translucent, theoretically dense mullite (3AI2O3.2SiO2) were investigated over the temperature range room temperature to 1500°C. Large agglomerates were found to contribute to the formation of porosity nests which act as strength‐controlling flaws at room temperature as well as at high temperatures. Despite the slow crack growth above 1300°C, a slight increase in fracture stress and a large increase in KIc were observed up to 1500°C. These increases are explained by the dominance of energy dissipation through plastic relaxation in the plastic zone over grain‐boundary sliding due to the presence of the glassy phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.