Abstract
ABSTRACTHydrogels are polymer networks swollen in water. Because of their soft and wet nature, and their ability to show large volume changes, hydrogels can be useful in many biomedical and actuator applications. In these applications, it is crucial to tune the mechanical and physical properties of a hydrogel in a controllable manner. Here, interpenetrating polymer networks (IPNs) made of a covalently crosslinked network and an ionically crosslinked network were produced to investigate the effective parameters that control the physical and mechanical properties of an IPN hydrogel. Covalently crosslinked polyacrylamide (PAAm) or poly(acrylic acid) (PAA) networks were produced in the presence of alginate (Alg) that was then ionically crosslinked to produce the IPN hydrogels. The effect of ionic crosslinking, degree of covalent crosslinking, AAm : Alg and AA : Alg ratio on the swelling ratio, tensile properties, indentation modulus, and fracture energy of IPN hydrogels was studied. A hollow cylindrical hydrogel with gradient mechanical properties along its length was developed based on the obtained results. The middle section of this hydrogel was designed as a pH triggered artificial muscle, while each end was formulated to be harder, tougher, and insensitive to pH so as to function as a tendon‐like material securing the gel muscle to its mechanical supports. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2504–2513, 2013
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.