Abstract

A permanent magnetic microneedle was developed to apply tensional forces to integrin receptors via ligand-coated magnetic microbeads while optically analyzing the mechanical properties of individual focal adhesions. Force application (130 pN for 3 s) through activated β1 integrins produced less bead displacement than when unligated integrins were stressed. This strengthening response differed markedly on a bead-by-bead basis, correlated directly with local focal adhesion assembly, and was similar when analyzed at 4 °C, indicating that it was due to passive material properties of the cell. Viscoelastic analysis clarified that recruitment of focal adhesion proteins increased the local elastic stiffness of the adhesion complex without changing its viscous behavior. These data indicate that individual focal adhesions exhibit distinct mechanical properties that depend upon local focal adhesion assembly, and that these local variations in micromechanics can be detected and analyzed within living cells using the permanent magnetic microneedle technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.