Abstract

Polymer hydrogels are a type of soft and wet materials with three-dimensional network structure, large water content and hydrophilicity. It plays a very important effect in the human tissue engineering because it has some excellent characteristics as human active tissue. In this study, physical/chemical hybrid cross-linked hydrogels were prepared by "one-pot" method, and the mechanical properties of hydrogels were effectively controlled by immersing in different concentration of sodium chloride solution. The tensile strength of the hydrogels can be increased from 0.1 MPa to 1.8 MPa by the controlling the concentration of the sodium chloride solution, and the elongation at break increased from 770.3% to 1320.9%. It was found that the hybrid cross-crosslinked hydrogels has good self-healing properties. Put the cut gels section together, it can be self-healing, and the elongation at break of healing the gels was restored to the original gels of the 30%. Therefore, this high ionic content of the hydrogels have excellent performance in the human cartilage materials, medical materials and electrical properties. The hybrid dual crosslinked hydrogels has excellent overall properties, which are characterized by high-strength hydrogels obtained from polyelectrolytes and "high ionic solutions". So it is of potential value in the application of high performance ionic conductive hydrogels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call