Abstract

ABSTRACTMechanical behavior of gels formed with gellan polymer crosslinked by calcium and magnesium ions was studied to determine the influence of divalent ion type and polymer concentration. Failure strength and deformation were measured in compression and related to concentrations of gellan and bound cations in gel matrices. Insufficient cations formed weak, extensible gels. Maximum gel strength was achieved at 0.5 divalent cations/repeat tetrasaccharide unit, assumed to be the condition for maximal numbers of complete junction zones. At optimum cation levels gels with Ca++ were about 1.2 times stronger than gels with Mg++ at the same polymer concentration. Excessive cations weakened the gels. Twice as much reduction in gel strength resulted from additional Ca++ as compared to the same additional amount of Mg++. Differences between strengths of the gels may be attributable to polymer configurations at junction zones in relation to cation size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.