Abstract

Mechanical properties of GaAs crystals grown by the liquid encapsulated Czochralski technique and the boat technique are investigated by means of compression tests. Stressstrain characteristics of a GaAs crystal in the temperature range 400°–500°C are very similar to those of a Si crystal in the temperature range 800°–900°C. This seems to reflect the fact that the dislocation mobility in a GaAs crystal in the former temperature range is comparable to that in a Si crystal in the latter temperature range. Dislocations in GaAs crystals are found to be easily immobilized at an intermediate temperature due to gettering of impurities and/or impurity-point defect complexes. In comparison to a Si crystal, the surface of a GaAs crystal seems to involve irregularities that act easily as effective generation centers for dislocations. Thus the magnitude of the yield stress of an aged GaAs crystal is controlled by the surface condition and is not influenced by the density of dislocations involved in the crystal. The socalled steady state of deformation is realized in a GaAs crystal in the deformation stage after the lower yield point as in Si and Ge crystals. Dislocation distributions in a deformed GaAs crystal observed by transmission electron microscopy is very similar to those in deformed Si and Ge crystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.