Abstract

ABSTRACT The radial position of the flax fibers as reinforcement and polypropylene (pp) fibers as matrix was altered using friction spinning in three distinctive sequences from core to sheath, namely, (a) pp-flax-flax-pp (PFFP), (b) flax-pp-flax-pp (FPFP), and (c) flax-flax-pp-pp (FFPP). Interestingly, at the towpregs stage, PFFP demonstrated higher tensile characteristics than FPFP and FFPP. The towpregs were consolidated to yield three unidirectional composites (UDCs), namely, UDC-PFFP, UDC-FPFP, and UDC-FFPP, using compression molding. The tensile strength of the composites () was contrary to the breaking load (f) of the corresponding towpregs () which necessitated the current investigation. Remarkably, the UDC with the lowest tensile as well as interlaminar shear strength i.e. UDC-PFFP, yielded the maximum energy absorption in Charpy and Notch impact tests. In the towpreg, the flax fibers when placed at the core position, slid over each other resulting in poor strength in FFPP while post-curing the pp matrix impregnated the core flax fibers in UDC-FFPP, resulting in the highest strength amongst the three UDCs in tensile and flexural modes. Micro-computed tomography (µCT) was carried out to confirm the same. Thus, the user can select the requisite fiber-matrix radial positions within towpreg to suit the ultimate applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.